Soil Dynamics and Geotechnical Earthquake Engineering

Soil Dynamics and Geotechnical Earthquake Engineering

Module	Credits	Workload	Semester[s]	Duration	Group size
number	6 CP	180 h	3. Sem.	1 Semester[s]	no limitation
SE-CO-7					
Courses			Contact hours	Self-study	Frequency
a) Soil Dynamics			a) 2 WLH (30 h)	a) 60 h	a) each winter
b) Geotechnical Earthquake Engineering			b) 2 WLH (30 h)	b) 60 h	b) each winter

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Torsten Wichtmann

- a) Dr.-Ing. Meisam Goudarzy
- b) Dr.-Ing. Felipe Prada, Dr.-Ing. Nazanin Irani

Admission requirements

Learning outcome, core skills

After successfully completing the modules, the students are able to

- understand soil dynamic problems and describe them mathematically,
- · design and evaluate laboratory or field testing programs to determine dynamic soil properties,
- estimate dynamic soil properties by means of empirical approaches,
- design foundations subjected to dynamic loading (e.g. machine foundations),
- determine the loading resulting from earthquakes considering the ground conditions,
- · estimate the risk of soil liquefaction and choose suitable countermeasures,
- design geotechnical structures (e.g. foundations, slopes) against earthquake loads.

Contents

a)

The lecture deals with the fundamentals of Soil Dynamics:

- Fundamentals of vibration theory
- Homogeneous systems
- Wave propagation in elastic isotropic half space
- Laboratory tests on dynamic characteristics of soils
- · Methods to estimate dynamic characteristics of soils
- · Dynamic field measurement methods
- Design of dynamically loaded foundations
- Soil-structure interaction under dynamic loading
- High cyclic loading of soils (practical problem: offshore wind turbines)
- Laboratory exercise (Resonant column experiment, wave velocity measurements).

b)

The lecture covers the effects of a seismic event on geotechnical structures and the design of such structures against earthquakes:

- Principles of Engineering Seismicity: earthquake description, source characterization, intensity, magnitude and duration parameters, maximum magnitude, concept of response spectra, ground motion prediction (attenuation equations)
- Deterministic and probabilistic estimation of seismic hazard. Microzoning studies.

- Causes of soil liquefaction under seismic loading; methods to estimate the liquefaction risk; countermeasures
- Design of slopes against seismic loading
- Design of retaining structures against seismic loading
- Ground response analysis

Educational form / Language

- a) Lecture with tutorial / English
- b) Lecture with tutorial / English

Examination methods

- Written exam 'Soil Dynamics and Geotechnical Earthquake Engineering' (180 min., Part of modul grade 100 %)
- Homework with bonus points for the exam for both parts of the module.

Requirements for the award of credit points

· Passed final written examination

Module applicability

• M.Sc. Subsurface Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 6 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents.

DIV: The values can be taken from the table of contents.

Further Information